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Corrections

1. Theorem 3.7.1 in subsection 3.7.4 is wrong. The contents of Subsection 3.7.4 should be
discarded and replaced by the following:

“In the case of general exponential families, we have derived a general necessary and
sufficient condition for the existence of a penalized likelihood corresponding to the modified
scores based on the expected information (see Subsection 3.2.3). The derivation was
based on the re-expression of the modified scores as ordinary scores plus derivative of
the logarithm of Jeffreys prior plus an extra term. This extra term is zero for canonical
families and so the modified scores correspond to penalization of the likelihood by Jeffreys
prior.

Here we present a more specialized but not less important result within the class of uni-
variate GLMs. The following theorem identifies those non-canonical link functions which
always — i.e, regardless of the dimension or structure of X — do admit such a penalized
likelihood interpretation.

Theorem 3.7.1: In the class of univariate generalized linear models, there exists a pe-
nalized log-likelihood l∗ such that ∇l∗(β) ≡ U(β) +A(E)(β), for all possible specifications
of design matrix X, if and only if the inverse link derivatives dr = 1/g′r(µr) satisfy

dr ≡ αrκω2,r (r = 1, . . . , n) , (3.28)

where αr (r = 1, . . . , n) and ω do not depend on the model parameters. When condition
(3.28) holds, the penalized log-likelihood is

l∗(β) =


l(β) +

1

4

∑
r

log κ2,r(β)hr (ω = 1/2)

l(β) +
ω

4ω − 2
log |F (β)| (ω 6= 1/2) .

(3.29)

Proof. Note that d′r/dr = dlog dr/dηr and so, for adjustments based on the expected
information, (3.22) can be written as

U∗t = Ut +
1

2
trace (HETt) (t = 1, . . . , p) , (3.30)

with E = diag(dlog d1/dη1, . . . ,dlog dn/dηn) and Tt = diag(x1t, . . . , xnt). As, for example,
in the case of the existence of quasi-likelihoods in McCullagh & Nelder (1989, § 9.3.2),
there exists a penalized log-likelihood l∗ such that ∇l∗(β) ≡ U(β) + A(E)(β), if and only
if ∂U∗s (β)/∂βt = ∂U∗t (β)/∂βs for every s, t ∈ {1, 2, . . . , p}, s 6= t. By (3.30), this holds if
and only if

∂trace (HETt)

∂βs
= trace

(
H
∂E

∂βs
Tt

)
+ trace

(
∂H

∂βs
ETt

)
is invariant under interchange of the subscripts s and t. The first term in the right hand
side of the above expression is invariant because ∂E/∂βs = ETs and Ts and Tt are by
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definition diagonal so that matrix multiplication is commutative for them. For the second
term,

∂H

∂βs
= −X(XTWX)−1XTWsX(XTWX)−1XTW +X(XTWX)−1XTWs ,

where Ws = ∂W/∂βs = W (2E − Λ)Ts with

Λ = diag(dlog κ2,1/dη1, . . . ,dlog κ2,n/dηn). Thus,

trace

(
∂H

∂βs
ETt

)
=2 trace (HETsETt)− 2 trace (HETsHETt)−

trace (HΛTsETt) + trace (HΛTsHETt) .

By the properties of the trace function, the first three terms in the right hand side of
the above expression are invariant under interchange of s and t. Thus the condition is
reduced to the invariance of trace(HΛTsHETt). The projection matrix H can be written
as H = SW , with S = X(XTWX)−1XT . Let H̃ = W 1/2SW 1/2. Taking into account
the symmetry of H̃, some trivial algebra and an application of Theorem 3 of Magnus &
Neudecker (1999, Chapter 2) gives

trace (HΛTsHETt) = trace
(
H̃TsΛH̃ETt

)
= (vecTt)

T
{(
EH̃Λ

)
⊗ H̃

}
vecTs . (3.31)

The columns of X are by assumption linearly independent and thus (3.31) is invariant
under interchanges of s and t if and only if aT {(EH̃Λ)⊗ H̃}b is a symmetric bilinear form
for distinct vectors a and b of appropriate dimension, or equivalently if and only if EH̃Λ
is symmetric, i.e.,

dlog dr
dηr

dlog κ2,i
dηi

h̃ri =
dlog κ2,r

dηr

dlog di
dηi

h̃ri (r, i = 1, . . . , n; r > i) , (3.32)

with h̃ri the (r, i)th element of H̃.

In general the above equations are not satisfied simultaneously, except possibly for spe-
cial structures of the design matrix X, which cause h̃ri = 0 for a set of pairs (r, i).
Hence, assuming that h̃ri 6= 0 (r, i = 1, . . . , n; r > i), the general equation in (3.32)
reduces to dlog dr/dηrdlog κ2,i/dηi = dlog κ2,r/dηrdlog di/dηi. Now, if dlog κ2,r/dηr =
dlog κ2,i/dηi = 0 for some pair (r, i) then the equation for this (r, i) is satisfied. Thus,
without loss of generality assume that dlog κ2,r/dηr 6= 0 for every r ∈ {1, . . . , n}. Un-
der these assumptions condition (3.32) can be written as dlog dr/dηr = ωdlog κ2,r/dηr
(r = 1, . . . , n), where ω does not depend on the model parameters. By integration of both
sides of dlog dr/dηr = ωdlog κ2,r/dηr with respect to ηr, a necessary condition for the
adjusted score to be the gradient of a penalized likelihood is thus

dr ≡ αrκω2,r (r = 1, . . . , n) , (3.33)

where {αr : r = 1, . . . , n} are real constants not depending on the model parameters.
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To check that (3.33) is sufficient, simply note that if we substitute accordingly, the matrix
EH̃Λ is symmetric.

In addition, if condition (3.33) is satisfied for some ω and αr (r = 1, . . . , n) then the
rth diagonal element of E is dlog dr/dηr = ωκ′2,r/κ2,r for every r ∈ {1, . . . , n}, with
κ′2,r = dκ2,r/dηr. On the other hand, dwr/dηr = (2ω − 1)wrκ

′
2,r/κ2,r. Hence, by (3.30)

and for ω 6= 1/2 the tth component of the adjusted score vector is

Ut(β) +
ω

4ω − 2
trace

{
X
(
XTW (β)X

)−1
XTWt(β)

}
=

∂

∂βt

{
l(β) +

ω

4ω − 2
log
∣∣XTW (β)X

∣∣} ,

where and Wt(β) = ∂W (β)/∂βt.

If ω = 1/2 then wr = α2
r (r = 1, . . . , n). Hence, the hat matrix H does not depend on the

model parameters. Thus, by (3.22), the tth component of the adjusted score vector is

Ut(β) +
1

4

∑
r

hr
κ′2,r(β)

κ2,r(β)
xrt =

∂

∂βt

{
l(β) +

1

4

∑
r

log κ2,r(β)hr

}
.

In the above theorem the canonical link is the special case ω = 1. With ω = 0, condition
(3.28) refers to identity links for which the log-likelihood penalty is identically zero. The
case ω = 1/2 is special on account of the fact that the working weights, and hence F and
H, do not in that case depend on β.

Example 3.7.1: Consider a Poisson generalized linear model with link function from the
power family η = (µν − 1)/ν (McCullagh & Nelder, 1989, § 2.2.3). Then dr = µ1−νr and
κ2,r = µr (r = 1, . . . , n). Bias reduction based on expected information is equivalent to
maximization of penalized likelihood (3.29) with ω = 1− ν.

Theorem 3.7.1 has direct practical consequences, notably for the construction of confidence
sets. The use of profile penalized likelihood as suggested for example in Heinze & Schemper
(2002) and Bull et al. (2007) is always available for a generalized linear model whose link
function satisfies condition (3.28), but typically is not possible otherwise. Models which fail
to meet condition (3.28) include, for example, probit and complementary log-log models
for binary responses.”

2. On page 69, in the last paragraph of Subsection 5.2.1:

“We should mention that in contrast to the case of logistic regression, Theorem 3.7.1
shows that there does not exist a penalized likelihood corresponding to either (5.2), (5.3),
or (5.4).”

should be replaced by
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“We should mention that in contrast to the case of logistic regression, Theorem 3.7.1 can
be used to show that generally there does not exist a penalized likelihood corresponding to
either (5.2), (5.3), or (5.4), except for very special structures of matrix X like, for example,
the one-way layout.”

3. On page 84, in the last paragraph of Subsection 5.2.6:

“However, as Theorem 3.7.1 shows, there is no penalized likelihood corresponding to non-
canonical models within the class of GLMs. Thus, for the BR estimates, there is no
argument motivating the use of confidence intervals based on penalization of the likelihood
by Jeffreys prior.”

should be replaced by

“By Theorem 3.7.1, in the case of binomial response GLMs, a penalized likelihood corre-
sponding to the modified scores does not generally exist for non-canonical links.”

4. on page 103, second paragraph:

“We have focused on univariate GLMs, where despite the fact that penalized likelihoods
exist only for canonical links, we have shown ...”

should be replaced by

“We have focused on univariate GLMs, where we have identified the models that admit a
penalized likelihood interpretation of the bias-reduction method with modifications based
on the expected information and we have shown ...”

5. On page 26, expression (3.16), Wrs ⊗ 1q should be Wrs ⊗ 1p. The same typo should be
corrected in the displayed expression for Pt +Qt before expression (3.16). Corresponding
corrections should also be applied to the relevant parts in (B.7), the expression after (B.7),
(B.8), (B.9) and in the algebraic derivation on page 125. That is [DT

r ]s ⊗ 1q should be
[DT

r ]s ⊗ 1p, D(µrs; ηr)⊗ 1q should be D(µrs; ηr)⊗ 1p and Wrs ⊗ 1q should be Wrs ⊗ 1p.
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