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Wald statistic for scalar parameters

Data

(yi , x
>
i ) (i = 1, . . . , n)

xi = (xi1, . . . , xik)> ∈ <k is a vector of explanatory variables for yi

Model

Independent random variables Y1, . . . ,Yn with pdf/pmf pY (yi |xi ; θ)

Parameter θ ∈ Θ ⊂ <p with

θ = (ψ, λ>)>, where ψ ∈ < is of interest

Task

Draw inference about ψ
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Wald statistic
Log-likelihood1

l(θ) =
n∑

i=1

log pY (yi |xi ; θ)

Wald statistic for testing ψ = ψ0

t =
ψ̂ − ψ0

κ(θ̂)

appr∼ N(0, 1)

Maximum likelihood estimator (MLE)

θ̂ = (ψ̂, λ̂>)> = arg max
θ∈Θ

l(θ)

Standard error

κ(θ) is the square root of the (ψ,ψ) element of the variance-covariance
{i(θ)}−1 of the (asymptotic) null distribution of θ̂

i(θ) is typically taken to be the expected information E{∇l(θ)∇l(θ)>}
or some “robust” variant

1subject to usual regularity conditions; see, Pace and Salvan (1997, §4.3)
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Wald statistic
Asymptotically equivalent alternatives

Signed root of the likelihood ratio statistic

r = sign(ψ̂ − ψ0){l(ψ̂, λ̂)− l(ψ0, λ̂ψ0 )}1/2 appr∼ N(0, 1)

Signed root of the score statistic

s = sign(ψ̂ − ψ0)
∂l(ψ0, λ̂ψ0 )

∂ψ
κ(ψ0, λ̂ψ0 )

appr∼ N(0, 1)

where λ̂ψ0 = arg maxλ l(ψ0, λ) is the constrained MLE for λ

Pros of t

Computational convenience

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37540 0.68957 -0.5444 0.58617

lullyes 1.43237 0.73414 1.9511 0.05105 .

day2 -0.11394 1.04442 -0.1091 0.91313

day3 -0.58487 1.13343 -0.5160 0.60584

day4 -1.71670 1.31233 -1.3081 0.19083

day5 1.82912 1.30168 1.4052 0.15996

day6 0.24783 0.94155 0.2632 0.79238

day7 0.94994 0.99256 0.9571 0.33854

day8 0.46505 0.96850 0.4802 0.63111

day9 0.88646 1.11872 0.7924 0.42813

day10 1.66815 1.05172 1.5861 0.11271

day11 2.03776 1.28632 1.5842 0.11315

day12 2.48684 1.26133 1.9716 0.04865 *

day13 0.94994 0.99256 0.9571 0.33854

day14 1.82912 1.30168 1.4052 0.15996

day15 1.14426 1.09171 1.0481 0.29458

day16 2.35819 1.26754 1.8605 0.06282 .

day17 0.49233 1.03976 0.4735 0.63586

day18 0.94994 0.99256 0.9571 0.33854

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cons of t

Inferential performance depends on the
properties of θ̂ (bias, efficiency, etc)

Lack of reparameterization invariance

Ioannis Kosmidis - Location-adjusted Wald statistics 6/45



Reading accuracy IQ and dyslexia

Data

Reading accuracy for 44 nondyslexic and dyslexic Australian children2

Ages between 8 years+5 months and 12 years+3 months

Variables
accuracy the score on a reading accuracy test
iq standardized score on a nonverbal intelligent quotient test
dyslexia whether the child is dyslexic or not

2data from Smithson and Verkuilen (2006) Ioannis Kosmidis - Location-adjusted Wald statistics 7/45
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Aim

Investigate the relative contribution of nonverbal IQ to the distribution
the reading scores, controlling for the presence of diagnosed dyslexia
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Reading accuracy IQ and dyslexia

Model

Score of the i-th child is from a Beta distribution with mean µi and
variance µi (1− µi )/(1 + φi ) with

log
µi

1− µi
= β1 +

4∑
j=2

βjxij and log φi = γ1 +
3∑

j=2

γjxij

xi2 takes value −1 if the ith child is dyslexic and 1 if not

xi3 is the nonverbal IQ score, and

xi4 = xi2xi3 is the interaction between dyslexia and iq
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Call:
betareg(formula = accuracy ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,

type = "ML")

Standardized weighted residuals 2:
Min 1Q Median 3Q Max

-2.3900 -0.6416 0.1572 0.8524 1.6446

Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1232 0.1428 7.864 3.73e-15 ***
dyslexia -0.7416 0.1428 -5.195 2.04e-07 ***
iq 0.4864 0.1331 3.653 0.000259 ***
dyslexia:iq -0.5813 0.1327 -4.381 1.18e-05 ***

Phi coefficients (precision model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.3044 0.2227 14.835 < 2e-16 ***
dyslexia 1.7466 0.2623 6.658 2.77e-11 ***
iq 1.2291 0.2672 4.600 4.23e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type of estimator: ML (maximum likelihood)
Log-likelihood: 65.9 on 7 Df
Pseudo R-squared: 0.5756
Number of iterations: 25 (BFGS) + 1 (Fisher scoring)

3see Grün, Kosmidis, and Zeileis (2012) for a range of modelling strategies and
learning methods based on beta regression using the betareg R packageIoannis Kosmidis - Location-adjusted Wald statistics 10/45



Null distribution of Wald statistic for βj = β0j

dyslexia:iq iq
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parameter mean sd

dyslexia:iq -0.09 1.15
iq 0.08 1.15

4figures based on 50 000 simulated samples under the maximum likelihood fit
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Empirical null rejection probabilities
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Empirical rejection probabilities are almost double the nominal level
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MLE and bias corrected estimator5

(phi)_(Intercept) (phi)_dyslexia (phi)_iq
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5with type = BC in the betareg call
see, Grün, Kosmidis, and Zeileis (2012) for details on bias correction
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Null distribution of Wald statistic using BC estimators6

dyslexia:iq iq
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6Proposed in Kosmidis and Firth (2010) Ioannis Kosmidis - Location-adjusted Wald statistics 14/45



Empirical null rejection probabilities
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7figures based on 50 000 simulated samples under the maximum likelihood fit
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Recap on Wald statistics with improved estimators

Use of improved estimators when forming Wald statistics can improve
N(0, 1) approximation and hence inferential performance8

But

Merely an observation, and in a few models

Rather indirect way to improving Wald inference

Better estimators in t 6=⇒ null distribution of t closer to N(0, 1)

8see, e.g., Kosmidis and Firth (2010)
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Wald statistic as an estimator

Wald Transform

T (θ;ψ0) =
ψ − ψ0

κ(θ)ww�
The Wald statistic

t = T (θ̂;ψ0)
is the MLE of T (θ;ψ0)

Core idea

Bias reduction techniques to bring asymptotic mean of t “closer” to 0
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Bias of t

Under regularity conditions9 it can be shown that

E{T (θ̂;ψ0)− T (θ;ψ0)} = B(θ;ψ0) + O
(
n−3/2

)
where

First-order bias of t

B(θ;ψ0) = b(θ)>∇T (θ;ψ0) +
1

2
trace

[
{i(θ)}−1∇∇>T (θ;ψ0)

]
First-order bias of θ̂

b(θ) such that E (θ̂ − θ) = b(θ) + o
(
n−1
)

9to guarantee that T (θ, ψ0) is > 3 times differentiable wrt θ and θ̂ is consistent
Ioannis Kosmidis - Location-adjusted Wald statistics 19/45



Location-adjusted Wald statistic

Key result

The location-adjusted Wald statistic

t∗ = T (θ̂;ψ0)− B(θ̂;ψ0)

has null expectation of order O(n−3/2)

Ioannis Kosmidis - Location-adjusted Wald statistics 20/45



Quantities in the bias of t

i(θ) and b(θ) are readily available for a wide range of models, including
generalized linear and nonlinear models10

Gradient and Hessian of the Wald transform

∇T (θ;ψ0) =

{1p − T (θ;ψ0)∇κ(θ)} /κ(θ)

∇∇>T (θ;ψ0) =

−
[
∇κ(θ) {∇T (θ;ψ0)}> +∇T (θ;ψ0) {∇κ(θ)}> + T (θ;ψ0)∇∇>κ(θ)

]
/κ(θ)

∇κ(θ) and ∇∇>κ(θ) can be computed either analytically, or using
automatic or numerical differentiation

10see, for example, Cook et al. (1986); Cordeiro and McCullagh (1991); Cordeiro
and Vasconcellos (1997); Cordeiro and Toyama Udo (2008); Kosmidis and Firth
(2009); Simas et al. (2010); Grün et al. (2012) etc Ioannis Kosmidis - Location-adjusted Wald statistics 21/45



Example: Exponential with mean e−θ

Cornish-Fisher expansions (Hall, 1992, § 2.5) of the α-level quantiles qα
and q∗α of the distribution of t and t∗ in terms of the corresponding
standard normal quantiles zα are

qα = zα + n−1/2 z
2
α + 2

6
− n−1 11z3

α − 65zα
144

+ O
(
n−3/2

)
,

q∗α = zα + n−1/2 z
2
α − 1

6
− n−1 11z3

α − 65zα
144

+ O
(
n−3/2

)
,

provided that ε < α < 1− ε for any 0 < ε < 1/2

→ Quantiles of t∗ are closer to those of N(0, 1) than t
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Computational complexity and implementation

No extra matrix inversions (beyond {i(θ)}−1) or optimisation when
computing t∗; only extra matrix multiplications

In its analytical form, t∗ has the computational complexity O(p4),
whence t has O(p3)

Time complexity can be reduced drastically by exploiting sparsity in i(θ)
in specific models and vectorising operations

Evaluation of t∗ for each of the model parameters can be done post-fit
and in parallel

Ioannis Kosmidis - Location-adjusted Wald statistics 23/45



Implementation with numerical derivatives of κ(θ)
As implemented in the waldi R package
https://github.com/ikosmidis/waldi11

R> bias <- enrichwith::get_bias_function(object)
R> info <- enrichwith::get_information_function(object)
R>
R> t <- coef(summary(object))[, "z value"]
R> theta_hat <- coef(object)
R> b <- bias(theta_hat)
R> inverse_i_hat <- solve(info(theta_hat))
R>
R> kappa <- function(theta, j) {
+ inverse_i <- solve(info(theta))
+ sqrt(inverse_i[j, j])
+ }
R>
R> adjusted_t <- function(j) {
+ u <- numDeriv::grad(kappa, theta_hat, j = j)
+ V <- numDeriv::hessian(kappa, theta_hat, j = j)
+ a <- -t[j] * u
+ a[j] <- 1 + a[j]
+ t[j] - sum(a * b)/ses[j] +
+ (sum(inverse_i_hat * (tcrossprod(a, u)))/ses[j] +
+ 0.5 * t[j] * sum(inverse_i_hat * V))/ses[j]
+ }

11Using R packages enrichwith (Kosmidis, 2017) and numDeriv (Gilbert and
Varadhan, 2016) Ioannis Kosmidis - Location-adjusted Wald statistics 24/45
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Beta regression: Reading accuracy and dyslexia
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Empirical null rejection probabilities
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Confidence intervals based on t∗

100(1− α)% confidence intervals based on t∗ can be obtained by finding
all ψ such that

|T (θ̂;ψ)− B(θ̂;ψ)| ≤ z1−α/2

where z1−α/2 is the 1− α/2 quantile of N(0, 1)

dyslexia iq dyslexia:iq (phi)_dyslexia (phi)_iq
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Wald statistics with bias-corrected estimators

t̃ = T (θ̃;ψ0)

with θ̃ being a bias-corrected estimator with

E (θ̃ − θ) = o(n−1)

Bias of t̃
E{T (θ̃;ψ0)− T (θ;ψ0)} = B̃(θ;ψ0) + o(n−1/2) with

B̃(θ;ψ0) = b(θ)>∇T (θ;ψ0) +
1

2
trace

[
{i(θ)}−1∇∇>T (θ;ψ0)

]
Use of bias-corrected estimators eliminates a term, but bias of Wald
statistic is still O(n−1/2)

Ioannis Kosmidis - Location-adjusted Wald statistics 29/45



Models with categorical responses

Location-adjustment of t̃ is still fruitful

Categorical response models, where bias-correction leads to estimates
that are always finite even in case where the MLE is infinite.
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Lulling babies

Data

18 matched pairs of binomial observations on the effect of lulling on the
crying of babies

Matching is per day and each day pair consists of the number of babies
not crying out of a fixed number of control babies, and the outcome of
lulling on a single child

Experiment involves 143 babies

Variables
crying crying status of the baby (1 not crying; 0 crying)
day the day of the experiment
lull has the baby been lulled?

Aim: Test the effect of lulling on the crying of children

Ioannis Kosmidis - Location-adjusted Wald statistics 32/45



Logistic regression: lulling babies

Model

Yij is a Bernoulli random variable for the crying status of baby j in day i
with probability µij of not crying

log
µij

1− µij
= βi + γzij

zij is 1 if the jth child on day i was lulled, and 0 otherwise

Task

Test γ = 0 accounting for heterogeneity between days

Ioannis Kosmidis - Location-adjusted Wald statistics 33/45



Testing for γ = 0

tc rc r t t∗ t̃ t̃∗

statistic 1.8307 2.0214 2.1596 1.9511 1.9257 1.7362 1.9064
p-value 0.0671 0.0432 0.0308 0.0510 0.0541 0.0825 0.0566

tc is the Wald statistic based on the maximum conditional likelihood
estimator

r and rc are the signed roots of the likelihood and conditional likelihood
ratio statistics
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Empirical p-value distribution
tc rc r boot t t * t~ t~
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12based on 50 000 samples from the mdoel with β1, . . . , β18 set to their maximum
likelihood estimates and γ = 0 Ioannis Kosmidis - Location-adjusted Wald statistics 35/45
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Mass univariate regression for brain lesions

resolution: 91× 109× 91 (902 629 voxels)

Sample

lesion maps for 50 patients13

Patient characteristics

multiple sclerosis type
(MS)14

age

gender

disease duration (DD)

two disease severity measures
(PASAT and EDSS)

Aim: Construct significance maps, highlighting voxels according to the
evidence against the null hypothesis of no covariate effect

14from the supplementary material of Ge et al. (2014)
150 for relapsing-remitting and 1 for secondary progressive multiple sclerosis
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Voxel-wise probit regressions

Lesion occurence in voxel j for patient i

Yij ∼ Bernoulli(πij)

Lesion probability

Φ−1(πij) = βj0+βj1MSi+βj2agei+βj3genderi+βj4DDi+βj5PASATi+βj6EDSSi

Ioannis Kosmidis - Location-adjusted Wald statistics 38/45



Results

Occurrence of infinite estimates

Covariate Occurrence

MS 75.5%
age 63.7%
gender 78.3%
DD 63.7%
PASAT 63.6%
EDSS 63.2%

Failures in evaluation of r

Covariate Occurrence

MS 19.2%
age 20.5%
sex 22.4%
DD 18.1%
PASAT 16.8%
EDSS 10.3%

15summaries based on voxels with lesion occurrence for at least one lesion across
patients Ioannis Kosmidis - Location-adjusted Wald statistics 39/45



Significance map for disease duration

18.9% of voxels with
|t̃| > 1

24.8% of voxels with

|t̃∗| > 1

Ioannis Kosmidis - Location-adjusted Wald statistics 40/45
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Recap

Location-adjustment can deliver substantial improvements to Wald
inference

Extra computational overhead is mainly due to matrix multiplications

Location adjustment with “robust”16 variance-covariance matrices

Location adjustment with alternative estimators of estimator bias,
including bootstrap and jackknife; particularly useful, e.g., for generalized
linear mixed effects models

Extensions to other pivotal quantities, including Wald statistics for
composite hypotheses, score statistics, or even directly p-values

16see, for example, MacKinnon and White (1985) Ioannis Kosmidis - Location-adjusted Wald statistics 42/45



References I
Cook, R. D., C.-L. Tsai, and B. C. Wei (1986). Bias in nonlinear regression. Biometrika 73,

615–623.

Cordeiro, G. and M. Toyama Udo (2008). Bias correction in generalized nonlinear models with
dispersion covariates. Communications in Statistics: Theory and Methods 37, 2219–225.

Cordeiro, G. M. and P. McCullagh (1991). Bias correction in generalized linear models. Journal of
the Royal Statistical Society, Series B: Methodological 53, 629–643.

Cordeiro, G. M. and K. L. P. Vasconcellos (1997). Bias correction for a class of multivariate
nonlinear regression models. Statistics & Probability Letters 35, 155–164.

Ge, T., N. Müller-Lenke, K. Bendfeldt, T. E. Nichols, and T. D. Johnson (2014). Analysis of
multiple sclerosis lesions via spatially varying coefficients. Annals of Applied Statistics 8(2),
1095–1118.

Gilbert, P. and R. Varadhan (2016). numDeriv: Accurate Numerical Derivatives. R package
version 2016.8-1.

Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in R: Shaken, stirred,
mixed, and partitioned. Journal of Statistical Software 48, 1–25.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer.

Kosmidis, I. (2017). enrichwith: Methods to enrich list-like R objects with extra components. R
package version 0.1.

Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models.
Biometrika 96, 793–804.

Kosmidis, I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation.
Electronic Journal of Statistics 4, 1097–1112.

MacKinnon, J. G. and H. White (1985). Some heteroskedasticity-consistent covariance matrix
estimators with improved finite sample properties. Journal of econometrics 29, 305–325.



References II
Pace, L. and A. Salvan (1997). Principles of Statistical Inference: From a Neo-Fisherian

Perspective. London: World Scientific.

Simas, A. B., W. Barreto-Souza, and A. V. Rocha (2010). Improved estimators for a general class
of beta regression models. Computational Statistics & Data Analysis 54, 348–366.

Smithson, M. and J. Verkuilen (2006). A better lemon squeezer? Maximum-likelihood regression
with beta-distributed dependent variables. Psychological Methods 11, 54–71.



Location-adjusted Wald statistic �

t∗ = T (θ̂;ψ0)− B(θ̂;ψ0)

Preprint

Di Caterina C and Kosmidis I (2017). Location-adjusted Wald statistic
for scalar parameters. ArXiv e-prints. arXiv:1710.11217

Software

waldi R package17 (soon in CRAN!) for computing t∗ for well-used
models, including GLMs (glm, brglm2) and beta regression (betareg)
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