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Bias reduction in estimation

Bias reduction in estimation

In regular parametric models the maximum likelihood estimator β̂ is
consistent and the expansion of its bias has the form

E(β̂ − β0) =
b1(β0)

n
+
b2(β0)

n2
+
b3(β0)

n3
+ . . . .

Firth (1993): Adjust the score functions Ut to

U∗t = Ut +At (t = 1, . . . , p) .

For appropriate functions At, U
∗
t = 0 (t = 1, . . . , p) results to

estimators β̃ with no O(n−1) bias term.

Mehrabi & Mathhews (1995), Heinze & Schemper (2002;2005), Bull
et al (2002;2007) and others.

→ ML estimates are not required.
→ Estimators with “better” properties.
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Exponential family of distributions

Random variable Y from the exponential family of distributions:

f(y ; θ) = exp

{
yT θ − b(θ)

λ
+ c(y, λ)

}
,

where the dispersion λ is assumed known.

µ = E(Y ; θ) =
db(θ)

dθ
,

σ2 = var (Y ; θ) = λ
d2b(θ)

dθ2
.
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Generalized nonlinear model

y1, . . . , yn realizations of independent random variables Y1, . . . , Yn
from the exponential family.

For a generalized nonlinear model (GNM)

g(µr) = ηr(β) (r = 1, . . . , n) ,

where g is the link function and ηr : <p → <.

Score functions:

Ut =

n∑
r=1

wr

dr
(yr − µr)xrt (t = 1, . . . , p) ,

where wr = d2r/σ
2, dr = dµr/dηr and xrt = ∂ηr/∂βt.
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Adjusted score functions for GNMs

Bias-reducing adjusted score functions (Kosmidis & Firth, 2008)

U∗t =

n∑
r=1

wr

dr

[
yr +

1

2
hr
d′r
wr

+ dr tr
{
F−1D2 (ηr;β)

}
− µr

]
xrt ,

→ d′r = d2µr/dη
2
r and hr is the r-th diagonal of H = XF−1XTW ,
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Adjusted score functions for GNMs

Bias-reducing adjusted score functions (Kosmidis & Firth, 2008)

U∗t =

n∑
r=1

wr

dr


y∗
r︷ ︸︸ ︷

yr +
1

2
hr
d′r
wr

+ dr tr
{
F−1D2 (ηr;β)

}
−µr

xrt ,
→ d′r = d2µr/dη

2
r and hr is the r-th diagonal of H = XF−1XTW ,

Kosmidis, I. Bias reduction in generalized nonlinear models



Reduction of the bias
Generalized nonlinear models

Illustration
Generalized linear models

Exponential family of distributions
Generalized nonlinear models
Adjusted score functions for GNMs
Implementation

Implementation

→ Replace yr with the adjusted responses y∗r in iterative reweighted
least squares (IWLS).

In terms of modified working observations

ζ∗r = ζr − ξr (r = 1, . . . , n) ,

where
→ ζr =

∑p
t=1 βtxrt + (yr − µr)/dr is the working observation for

maximum likelihood, and
→ ξr = −d′rhr/(2wrdr)− tr

{
F−1D2 (ηr;β)

}
/2.
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Modified working observations

Modified iterative re-weighted least squares

Iteration

β̃(j+1) = (XTW(j)X)−1XTW(j)(ζ(j) − ξ(j)) ,

The O(n−1) bias of the maximum likelihood estimator for
generalized nonlinear models is

b1/n = (XTWX)−1XTWξ

(Cook et al. 1986; Cordeiro & McCullagh, 1991).

Thus the iteration takes the form

β̃(j+1) = β̂(j) − b1,(j)/n .
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Illustration: The RC(1) model

Two-way cross-classification by factors X and Y with R and S
levels, respectively. Entries are realizations of independent Poisson
random variables.

The RC(1) model (Goodman, 1979, 1985)

logµrs = λ+ λXr + λYs + ργrδs .

Modified working observation:

ζ∗rs = ζrs +
hrs
2µrs

+ γrC(ρ, δs) + δsC(ρ, γr) + ρC(γr, δs) ,

where for any given pair of unconstrainted parameters κ and ν,
C(κ, ν) denotes the corresponding element of F−1; if either of κ or
ν is constrained, C(κ, ν) = 0.
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Data: Peridontal condition and calcium intake

Table: Periodontal condition and calcium intake (Goodman, 1981, Table 1.a.)

Periodontal condition
Calcium intake level

1 2 3 4

A 5 3 10 11
B 4 5 8 6
C 26 11 3 6
D 23 11 1 2

For identifiability, set λX1 = λY1 = 0, γ1 = δ1 = −2 and γ4 = δ4 = 2.

Simulate 250000 data sets under the maximum likelihood fit.

Estimate biases, mean squared errors and coverage of nominally 95%
Wald-type confidence intervals.
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Results

Table: Results for the dental health data. For the method of maximum likelihood,
simulation results are all conditional upon finiteness of the estimates (about 3.5% of
the simulated datasets resulted in infinite MLEs).

Estimates Simulation results

ML BR Bias (×102) MSE (×10) Coverage (%)

ML BR ML BR ML BR

λ 2.31 2.35 −4.19 −0.25 2.28 1.49 96.9 96.6
λX2 −0.13 −0.13 0.48 −0.01 1.45 1.16 95.8 96.2
λX3 0.55 0.52 2.97 −0.22 1.50 1.18 95.7 96.0
λX4 0.07 0.10 −5.00 0.02 3.34 1.87 97.1 97.3
λY2 −0.53 −0.53 −0.59 0.06 1.00 0.80 96.0 96.4
λY3 −1.17 −1.05 −16.81 1.19 6.55 2.80 97.1 96.1
λY4 −0.80 −0.75 −7.21 0.22 3.19 1.69 97.3 97.3
ρ −0.20 −0.18 −1.76 −0.03 0.05 0.03 95.5 95.0
γ2 −1.55 −1.48 −6.08 0.68 6.30 5.37 95.6 96.7
γ3 0.90 0.91 1.88 1.43 6.94 5.34 93.8 95.2
δ2 −1.16 −1.11 −7.00 −0.27 9.00 7.20 94.7 96.4
δ3 3.11 2.84 37.42 −4.92 35.55 18.13 92.8 92.4

ml, maximum likelihood; br, bias-reduced; mse, mean squared error.
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Penalized likelihood interpretation of bias reduction

Firth (1993): for a generalized linear model with canonical link, the
adjusted scores, correspond to penalization of the likelihood by the
Jeffreys (1946) invariant prior.

In models with non-canonical link and p ≥ 2, there need not exist
such a penalized likelihood interpretation.

Kosmidis, I. Bias reduction in generalized nonlinear models



Reduction of the bias
Generalized nonlinear models

Illustration
Generalized linear models

Bias-reducing penalized likelihoods

Penalized likelihood interpretation of bias reduction

Theorem

Existence of penalized likelihoods
In the class of generalized linear models, there exists a penalized
log-likelihood l∗ such that ∇l∗(β) ≡ U∗(β), for all possible specifications
of design matrix X, if and only if the inverse link derivatives
dr = 1/g′r(µr) satisfy

dr ≡ αrσ
2ω (r = 1, . . . , n) ,

where αr (r = 1, . . . , n) and ω do not depend on the model parameters.
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Penalized likelihood interpretation of bias reduction

The form of the penalized likelihoods for bias-reduction

When dr ≡ αrσ
2ω (r = 1, . . . , n) for some ω and α,

l∗(β) =


l(β) +

1

4

∑
r

log κ2,r(β)
hr (ω = 1/2)

l(β) +
ω

4ω − 2
log |F (β)| (ω 6= 1/2) .

→ The canonical link is the special case ω = 1.

→ With ω = 0, the condition refers to models with identity-link.

→ For ω = 1/2 the working weights, and hence F , H, do not depend
on β.

→ If ω /∈ [0, 1/2], bias-reduction also increases the value of |F (β)|.
Thus, approximate confidence ellipsoids, based on asymptotic
normality of the estimator, are reduced in volume.
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Discussion

A computational and conceptual framework for bias-reduction in
generalized nonlinear models.

λ was assumed known but this is not restricting the applicability of
the results. The dispersion is usually estimated separately from the
parameters β.

Bias reduction can be beneficial in terms of the properties of the
resultant estimators.

Bias and point estimation are not strong statistical principles:
→ Bias relates to parameterization thus improving the bias violates
exact equivariance under reparameterization.
→ Reduction in bias can be accompanied by inflation in variance.
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