Bias reduction in generalized nonlinear models

IOANNIS KOSMIDIS and DAVID FIRTH

Department of Statistics

THE UNIVERSITY OF

JSM 2009

Outline

2 Generalized nonlinear models

Illustration

Bias reduction in estimation

Bias reduction in estimation

• In regular parametric models the maximum likelihood estimator $\hat{\beta}$ is consistent and the expansion of its bias has the form

$$E(\hat{\beta} - \beta_0) = \frac{b_1(\beta_0)}{n} + \frac{b_2(\beta_0)}{n^2} + \frac{b_3(\beta_0)}{n^3} + \dots$$

• Firth (1993): Adjust the score functions U_t to

$$U_t^* = U_t + A_t \quad (t = 1, \dots, p).$$

For appropriate functions A_t , $U_t^* = 0$ (t = 1, ..., p) results to estimators $\tilde{\beta}$ with no $O(n^{-1})$ bias term.

- Mehrabi & Mathhews (1995), Heinze & Schemper (2002;2005), Bull et al (2002;2007) and others.
 - \rightarrow ML estimates are not required.
 - \rightarrow Estimators with "better" properties.

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Exponential family of distributions

• Random variable Y from the exponential family of distributions:

$$f(y; \theta) = \exp\left\{\frac{y^T \theta - b(\theta)}{\lambda} + c(y, \lambda)
ight\},$$

where the dispersion λ is assumed known.

$$\mu = E(Y; \theta) = \frac{\mathrm{d}b(\theta)}{\mathrm{d}\theta},$$

$$\sigma^{2} = \operatorname{var}(Y; \theta) = \lambda \frac{\mathrm{d}^{2}b(\theta)}{\mathrm{d}\theta^{2}}$$

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Generalized nonlinear model

- y_1, \ldots, y_n realizations of independent random variables Y_1, \ldots, Y_n from the exponential family.
- For a generalized nonlinear model (GNM)

$$g(\mu_r) = \eta_r(\beta) \quad (r = 1, \dots, n),$$

where g is the link function and $\eta_r : \Re^p \to \Re$.

• Score functions:

$$U_t = \sum_{r=1}^n \frac{w_r}{d_r} (y_r - \mu_r) x_{rt} \quad (t = 1, \dots, p) \,,$$

where $w_r = d_r^2/\sigma^2$, $d_r = \mathrm{d}\mu_r/\mathrm{d}\eta_r$ and $x_{rt} = \partial\eta_r/\partial\beta_t$.

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Adjusted score functions for GNMs

Bias-reducing adjusted score functions (Kosmidis & Firth, 2008)

$$U_t^* = \sum_{r=1}^n \frac{w_r}{d_r} \left[y_r + \frac{1}{2} h_r \frac{d'_r}{w_r} + d_r \operatorname{tr} \left\{ F^{-1} \mathcal{D}^2 \left(\eta_r; \beta \right) \right\} - \mu_r \right] x_{rt},$$

$$\Rightarrow d'_r = \mathrm{d}^2 \mu_r / \mathrm{d} \eta_r^2 \text{ and } h_r \text{ is the } r\text{-th diagonal of } H = X F^{-1} X^T W,$$

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Adjusted score functions for GNMs

Bias-reducing adjusted score functions (Kosmidis & Firth, 2008)

$$U_t^* = \sum_{r=1}^n \frac{w_r}{d_r} \left[\underbrace{y_r + \frac{1}{2} h_r \frac{d'_r}{w_r} + d_r \operatorname{tr} \left\{ F^{-1} \mathcal{D}^2 \left(\eta_r; \beta \right) \right\}}_{r = \mu_r} - \mu_r \right] x_{rt},$$

 $\rightarrow d'_r = \mathrm{d}^2 \mu_r / \mathrm{d} \eta_r^2$ and h_r is the *r*-th diagonal of $H = X F^{-1} X^T W$,

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Implementation

- \rightarrow Replace y_r with the adjusted responses y_r^* in iterative reweighted least squares (IWLS).
 - In terms of modified working observations

$$\zeta_r^* = \zeta_r - \xi_r \quad (r = 1, \dots, n) ,$$

where

 $\rightarrow \zeta_r = \sum_{t=1}^p \beta_t x_{rt} + (y_r - \mu_r)/d_r$ is the working observation for maximum likelihood, and

$$\rightarrow \xi_r = -d'_r h_r / (2w_r d_r) - \operatorname{tr} \left\{ F^{-1} \mathcal{D}^2 \left(\eta_r; \beta \right) \right\} / 2.$$

Exponential family of distributions Generalized nonlinear models Adjusted score functions for GNMs Implementation

Modified working observations

Modified iterative re-weighted least squares

Iteration

$$\tilde{\beta}_{(j+1)} = (X^T W_{(j)} X)^{-1} X^T W_{(j)} (\zeta_{(j)} - \xi_{(j)}),$$

• The $O(n^{-1})$ bias of the maximum likelihood estimator for generalized nonlinear models is

$$b_1/n = (X^T W X)^{-1} X^T W \xi$$

(Cook et al. 1986; Cordeiro & McCullagh, 1991).

• Thus the iteration takes the form

$$\tilde{\beta}_{(j+1)} = \hat{\beta}_{(j)} - b_{1,(j)}/n \,.$$

Illustration: The RC(1) model Data: Periodontal condition and calcium intake

Illustration: The RC(1) model

- Two-way cross-classification by factors X and Y with R and S levels, respectively. Entries are realizations of independent Poisson random variables.
- The RC(1) model (Goodman, 1979, 1985)

$$\log \mu_{rs} = \lambda + \lambda_r^X + \lambda_s^Y + \rho \gamma_r \delta_s \,.$$

• Modified working observation:

$$\zeta_{rs}^* = \zeta_{rs} + \frac{h_{rs}}{2\mu_{rs}} + \gamma_r C(\rho, \delta_s) + \delta_s C(\rho, \gamma_r) + \rho C(\gamma_r, \delta_s) \,,$$

where for any given pair of unconstrainted parameters κ and ν , $C(\kappa,\nu)$ denotes the corresponding element of F^{-1} ; if either of κ or ν is constrained, $C(\kappa,\nu) = 0$.

Illustration: The RC(1) model Data: Periodontal condition and calcium intake

Data: Peridontal condition and calcium intake

Table: Periodontal condition and calcium intake (Goodman, 1981, Table 1.a.)

Periodontal condition	Calcium intake level				
	1	2	3	4	
А	5	3	10	11	
В	4	5	8	6	
С	26	11	3	6	
D	23	11	1	2	

- For identifiability, set $\lambda_1^X = \lambda_1^Y = 0$, $\gamma_1 = \delta_1 = -2$ and $\gamma_4 = \delta_4 = 2$.
- Simulate 250000 data sets under the maximum likelihood fit.
- Estimate biases, mean squared errors and coverage of nominally 95% Wald-type confidence intervals.

Table: Results for the dental health data. For the method of maximum likelihood, simulation results are all conditional upon finiteness of the estimates (about 3.5% of the simulated datasets resulted in infinite MLEs).

Estimates				Simulation results						
	ML	BR	Bias ($ imes 10^2$)		MSE (×10)		Coverage (%)			
			ML	BR	ML	BR	ML	BR		
λ	2.31	2.35	-4.19	-0.25	2.28	1.49	96.9	96.6		
λ_2^X	-0.13	-0.13	0.48	-0.01	1.45	1.16	95.8	96.2		
$\lambda_3^{\overline{X}}$	0.55	0.52	2.97	-0.22	1.50	1.18	95.7	96.0		
λ_4^X	0.07	0.10	-5.00	0.02	3.34	1.87	97.1	97.3		
$\lambda_2^{\tilde{Y}}$	-0.53	-0.53	-0.59	0.06	1.00	0.80	96.0	96.4		
$\lambda_3^{\overline{Y}}$	-1.17	-1.05	-16.81	1.19	6.55	2.80	97.1	96.1		
λ_4^{Y}	-0.80	-0.75	-7.21	0.22	3.19	1.69	97.3	97.3		
ρ	-0.20	-0.18	-1.76	-0.03	0.05	0.03	95.5	95.0		
γ_2	-1.55	-1.48	-6.08	0.68	6.30	5.37	95.6	96.7		
γ_3	0.90	0.91	1.88	1.43	6.94	5.34	93.8	95.2		
δ_2	-1.16	-1.11	-7.00	-0.27	9.00	7.20	94.7	96.4		
δ_3	3.11	2.84	37.42	-4.92	35.55	18.13	92.8	92.4		

 $_{\rm ML}$, maximum likelihood; $_{\rm BR}$, bias-reduced; $_{\rm MSE}$, mean squared error.

Penalized likelihood interpretation of bias reduction

- Firth (1993): for a generalized linear model with canonical link, the adjusted scores, correspond to penalization of the likelihood by the Jeffreys (1946) invariant prior.
- In models with non-canonical link and $p \ge 2$, there need not exist such a penalized likelihood interpretation.

Bias-reducing penalized likelihoods

Penalized likelihood interpretation of bias reduction

Theorem

Existence of penalized likelihoods

In the class of generalized linear models, there exists a penalized log-likelihood l^* such that $\nabla l^*(\beta) \equiv U^*(\beta)$, for all possible specifications of design matrix X, if and only if the inverse link derivatives $d_r = 1/g'_r(\mu_r)$ satisfy

$$d_r \equiv \alpha_r \sigma^{2\omega} \quad (r = 1, \dots, n) \,,$$

where α_r (r = 1, ..., n) and ω do not depend on the model parameters.

Penalized likelihood interpretation of bias reduction

The form of the penalized likelihoods for bias-reduction

When $d_r \equiv \alpha_r \sigma^{2\omega}$ $(r = 1, \dots, n)$ for some ω and α ,

$$l^*(\beta) = \begin{cases} l(\beta) + \frac{1}{4} \sum_r \log \kappa_{2,r}(\beta)^{h_r} & (\omega = 1/2) \\ \\ l(\beta) + \frac{\omega}{4\omega - 2} \log |F(\beta)| & (\omega \neq 1/2) . \end{cases}$$

- \rightarrow The canonical link is the special case $\omega = 1$.
- $\rightarrow~$ With $\omega=0,$ the condition refers to models with identity-link.
- $\rightarrow~$ For $\omega=1/2$ the working weights, and hence F,~H, do not depend on $\beta.$
- $\label{eq:rescaled} \begin{array}{ll} \rightarrow & \mbox{If } \omega \notin [0,1/2], \mbox{ bias-reduction also increases the value of } |F(\beta)|. \\ & \mbox{ Thus, approximate confidence ellipsoids, based on asymptotic normality of the estimator, are reduced in volume.} \end{array}$

Discussion

- A computational and conceptual framework for bias-reduction in generalized nonlinear models.
- λ was assumed known but this is not restricting the applicability of the results. The dispersion is usually estimated separately from the parameters β .
- Bias reduction can be beneficial in terms of the properties of the resultant estimators.
- Bias and point estimation are *not* strong statistical principles:
 - $\rightarrow\,$ Bias relates to parameterization thus improving the bias violates exact equivariance under reparameterization.
 - $\rightarrow\,$ Reduction in bias can be accompanied by inflation in variance.

Some references

Bull, S. B., Mak, C. and Greenwood, C. (2002). A modified score function estimator for multinomial logistic regression in small samples. *Computational Statistics and Data Analysis* **39**, 57–74.

Cordeiro, G. M. and McCullagh, P. (1991). Bias correction in generalized linear models. *Journal of the Royal Statistical Society, Series B: Methodological*, **53**, 629–643.

Cook, R. D., Tsai, C.-L. and Wei, B. C. (1986). Bias in nonlinear regression. *Biometrika* **73**, 615–623.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. *Biometrika*, **80**, 27–38.

Kosmidis, I. and D. Firth (2008). Bias reduction in exponential family nonlinear models. Technical Report 8-5, CRiSM working paper series, University of Warwick. Accepted for publication in *Biometrika*.

Wei, B. (1997). *Exponential Family Nonlinear Models*. New York: Springer-Verlag Inc.