Reduced-bias inference for multi-dimensional Rasch models with applications

Ioannis Kosmidis¹ i.kosmidis@ucl.ac.uk David Firth² d.firth@warwick.ac.uk Heather Turner² ht@heatherturner.net

¹Department of Statistical Science, UCL ²Department of Statistics, University of Warwick

> IWSM 2013 July 2013, Palermo, Italy

> > (日) (图) (문) (문) (문)

Rasch Models	Maximum likelihood estimation	Bias reduction 0000000000	Scaling of legislators	Discussion	References	References
Rasch	models					

- Independent Bernoulli responses in a subject-item arrangement: Y_{is} is the outcome of the *s*th subject on the *i*th item.
- $\pi_{is} = P(Y_{is} = 1)$: the probability that sth subject succeeds on the *i*th item, (i = 1, ..., I; s = 1, ..., S).

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	References
000		0000000000	0000000			
The 2PL Rasch n	nodel					
2PI m	odel					

• The 2PL Rasch model:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \eta_{is} = \alpha_i + \beta_i \gamma_s \quad (i = 1, \dots, I; s = 1, \dots, S),$$

- Parameter interpretation:
 - α_i (or $-\alpha_i$): measure of the "ease" (or "difficulty") of the *i*th item,

- β_i : a "discrimination" parameter for the *i*th item,
- γ_s : the "ability" of the *s*th subject.

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	References
000		0000000000	0000000			
Extensions						
Extens	ions					

• More than one "discrimination" and "ability" dimensions:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \eta_{is} = \alpha_i + \sum_{j=1}^m \beta_{ji} \gamma_{js} \quad (i = 1, \dots, I; s = 1, \dots, S).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

•
$$\theta = (\alpha^T, \beta_1^T, \dots, \beta_m^T, \gamma_1^T, \dots, \gamma_m^T)^T.$$

• The number of parameters is p = I + m(I + S)

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	References
000		0000000000	0000000			
Scaling of legislato	rs					
Scaling	of legislators					

Data: US House of Representatives 2001:

• 20 roll calls selected by Americans for Democratic Action (ADA).

l egislator					Roll	call			
208.01000	1	2	3	4	5	6	7	8	
Akin	0	0	0	0	0	0	0	0	
Allen	1	1	1	1	1	1	1	1	
Andrews	1	1	1	1	1	1	1	1	
Armey	0	0	0	0	0	0	0	0	
Baca	1	1	1	1	1	1	1	NA	

• the agreement of the votes of 435 legislators to ADAs position was recorded.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Aim: Place the legislators on a "liberality" scale.

Data kindly supplied by Jan deLeeuw, used in deLeeuw (2006, CSDA).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Maximum likelihood estimation - Issues

- ML estimation is straighforward using generic tools (e.g. gnm uses a \rightarrow quasi Newton-Raphon iteration).
 - Useful asymptotic frameworks (e.g. information grows with the number of subjects):

 \rightarrow Full maximum likelihood generally delivers inconsistent estimates (Andersen, 1980, Chapter 6).

 \rightarrow Loss in performance of tests, confidence intervals.

• (Partial) Solutions: Integrated likelihoods, modified profile likelihoods

 \rightarrow can be hard to apply for 2PL and extensions due to nonlinearity.

Maximum likelihood estimation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Maximum likelihood estimation - Issues

- There is positive probability of boundary ML estimates.
 - \rightarrow Numerical issues in estimation.
 - \rightarrow Problems with asymptotic inference (e.g. Wald-type).
- Add small constants to the responses and totals (Haldane, 1955) Annals of Human Genetics).
 - \rightarrow Arbitrariness of the choice of constants
 - \rightarrow Not generally a good idea (K., 2013, JRSSB).

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	Reference
000		000000000	0000000			
Adjusted score fur	nctions					

Bias-reducing adjusted score functions

 K. and Firth (2009, B'ka) : appropriate adjustment A(θ) to the score vector for getting estimators with smaller asymptotic bias than ML:

$$\nabla_{\theta} l(\theta) + A(\theta) = 0.$$

 Applicable to models where the information increases with the number of observations (dim θ is independent of the number of observations).

 $\rightarrow~$ Not the case for Rasch models under useful asymptotic frameworks.

 $\rightarrow~$ But expect less-biased estimators than ML.

Bias reduction 0000000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Adjusted score functions

Bias-reducing adjusted score functions

- In binomial/multinomial response GLMs, the reduced-bias estimates \rightarrow are always finite (Heinze and Schemper 2002, StatMed; K. 2013, JRSSB)
- Easy implementation through Iterated ML fits on pseudo-data (K. \rightarrow and Firth, 2011, B'ka)
 - An identifiable parameterization is necessary.

Identifiability: 2-dimensional model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Identifiability: 2-dimensional model

| ◆ □ ▶ | ◆ 酉 ▶ | ◆ 酉 ▶ | ◆ 国 | ● ○ へ ()

Bias reduction 0000000000

Identifiability

Identifiable parameterization

•
$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \eta_{is} = \alpha_i + \sum_{j=1}^m \beta_{ji} \gamma_{js}$$
 $(i = 1, \dots, I; s = 1, \dots, S)$.

$$B = \begin{bmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1I} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2I} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{m1} & \beta_{m2} & \dots & \beta_{mI} \end{bmatrix} \text{ and } \Gamma = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1S} \\ \gamma_{21} & \gamma_{22} & \dots & \gamma_{2S} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m1} & \gamma_{m2} & \dots & \gamma_{mS} \end{bmatrix}$$

- A sufficient set of constraints for identifiability:
 - Fix exactly *m* columns of *B*.
 - Fix exactly 1 element from each row of Γ .
 - A total of m(m+1) constraints. \rightarrow

• From the
$$p = I + m(I + S)$$
 parameters, only $p_E = I + m(I + S - m - 1)$ are effective.

Rasch Model

laximum likelihood estimatio

Bias reduction

Scaling of legislator

egislators Di

References

References

Adjusted score equations for Rasch models

Adjusted score equations for Rasch models

Adjusted score equations (only p_E effective) (K. and Firth, 2009, B'ka)

$$0 = \sum_{i=1}^{I} \sum_{s=1}^{S} \left(y_{is} + \frac{1}{2} h_{is} + (1+h_{is})\pi_{is} + c_{is} v_{is} \right) z_{ist} \quad (t = 1, \dots, p),$$

where

- $z_{ist} = \partial \eta_{is} / \partial \theta_t$ is the (s,t)th element of the $S \times (2I+S)$ matrix Z_i ,
- is the sth diagonal element of $H_i = Z_i F^{-1} Z_i^T \Sigma_i$ ("hat value" for the (i, s)th observation),
- $F = \sum_{i=1}^{T} Z_i^T \Sigma_i Z_i$,
- $\Sigma_i = \text{diag} \{ v_{i1}, \dots, v_{iS} \}$, $v_{is} = \text{var}(Y_{is}) = \pi_{is}(1 \pi_{is})$,
- $c_{is} = \sum_{j=1}^{m} \operatorname{AsCov}(\beta_{ji}, \gamma_{js})$ (AsCov(β_{ji}, γ_{js}) from the appropriate components of F^{-1}).

しょう しょう・ エー うんし

Bias reduction 00000000000

Adjusted score equations for Rasch models

Comparison with ML equations for Rasch models

Adjusted score equations (only p_E effective) (K. and Firth, 2009, B'ka),

$$0 = \sum_{i=1}^{I} \sum_{s=1}^{S} \left(y_{is} + \frac{1}{2} h_{is} + (1+h_{is})\pi_{is} + c_{is}v_{is} \right) z_{ist} \quad (t = 1, \dots, p),$$

where

- $z_{ist} = \partial \eta_{is} / \partial \theta_t$ is the (s, t)th element of the $S \times (2I + S)$ matrix Z_i ,
- is the sth diagonal element of $H_i = Z_i F^{-1} Z_i^T \Sigma_i$ ("hat value" for the (i, s)th observation),
- $F = \sum_{i=1}^{T} Z_i^T \Sigma_i Z_i$,
- $\Sigma_i = \text{diag} \{ v_{i1}, \dots, v_{iS} \}, v_{is} = \text{var}(Y_{is}) = \pi_{is}(1 \pi_{is}),$
- $c_{is} = \sum_{i=1}^{m} \operatorname{AsCov}(\beta_{ji}, \gamma_{js})$ $(\operatorname{AsCov}(\beta_{ii}, \gamma_{is}))$ from the appropriate components of F^{-1}).

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	References
000		000000000000000000000000000000000000000	0000000			
Iterated ML fits on	Iterated ML fits on pseudo-data					
Pseudo	data					

 $\rightarrow~$ If h did not depend on the parameters then the reduced-bias estimator would be formally the ML estimator on Binomial pseudo-data.

Pseudo data

Responses:	$y^* = y + h/2 + c\pi(1 - \pi)$
Totals:	$m^* = 1 + h$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rasch Models	Maximum likelihood estimation	Bias reduction	Scaling of legislators	Discussion	References	References
000		00000000000	0000000			
Iterated ML fits on pseudo-data						
Pseudo	data					

 $\rightarrow~$ If $h~{\rm did}$ not depend on the parameters then the reduced-bias estimator would be formally the ML estimator on Binomial pseudo-data.

Pseudo data

Responses:	$y^* = y + h/2 + c\pi 1_{(c>0)}$
Totals:	$m^* = 1 + h + c(\pi - 1_{(c<0)})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

* via algebraic manipulation of the adjusted scores to ensure $0 \le y^* \le m^*$. Here, $1_E = 1$ if E holds.

Bias reduction 0000000000

Iterated ML fits on pseudo-data

Iterated ML fits on pseudo data

• The adjusted score equations can be solved as follows.

Iterated ML fits on pseudo data

At each iteration

- Update the values of the pseudo data.
- Use ML to fit the Rasch model on the current value of the pseudo data.

Repeat until the changes to the estimates are small.

- Ingredients: standard ML software, routines for extracting the hat values and Fisher information.
- gnm and the methods hatvalues, vcov for gnm objects can do this \rightarrow

Rasch Models 000	Maximum likelihood estimation	Bias reduction 000000000	Scaling of legislators	Discussion	References	References
Data and aim						
Scaling	of legislators					

Data: US House of Representatives 2001:

- 20 roll calls selected by Americans for Democratic Action (ADA).
- Aim: Place the 435 legislators on a "liberality" scale.

Model	$\dim \theta$	Effective
1-dim	475	473
2-dim	930	924

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results from the one-dimensional model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Results from the one-dimensional model

990

Results from the two-dimensional model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Results from the two-dimensional model

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のんで

Equivariance under rotation, scale changes and translation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 - 約Q@

Interpretation of the dimensions of liberality

200

Rasch Models 000	Maximum likelihood estimation	Bias reduction 0000000000	Scaling of legislators	Discussion	References	References
Discus	sion					

- \rightarrow The method described here yields more sensible results than either *MLE* or *constant* data-adjustment.
- \rightarrow Computationally convenient.
- \rightarrow But still it is *inconsistent* (e.g., as the number of items increases).
- \rightarrow Like the MLE, the resultant estimators are equivariant under the "interesting" transformations (rotation, scale changes, translation). But they are **not** equivariant for general transformations.

• Extensions to time-dependent liberality scales.

- Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91(1), 65-80.
- Haldane, J. (1955). The estimation of the logarithm of a ratio of frequencies. Annals of Human Genetics 20, 309–311.
- Heinze, G. and M. Schemper (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine 21, 2409–2419.
- K., I. (2009). On iterative adjustment of responses for the reduction of bias in binary regression models. Technical Report 09-36, CRiSM working paper series.
- K., I. (2013, March). Improved estimation in cumulative link models. ArXiv e-prints 1204.0105. To appear in the Journal of the Royal Statistical Society: Series B.
- K., I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96(4), 793–804.
- K., I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. *Electronic Journal of Statistics* 4, 1097–1112.
- K., I. and D. Firth (2011). Multinomial logit bias reduction via the poisson log-linear model. Biometrika 98(3), 755–759.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● つくで

- Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91(1), 65-80.
- Haldane, J. (1955). The estimation of the logarithm of a ratio of frequencies. Annals of Human Genetics 20, 309–311.
- Heinze, G. and M. Schemper (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine 21, 2409–2419.
- K., I. (2009). On iterative adjustment of responses for the reduction of bias in binary regression models. Technical Report 09-36, CRiSM working paper series.
- K., I. (2013, March). Improved estimation in cumulative link models. ArXiv e-prints 1204.0105. To appear in the Journal of the Royal Statistical Society: Series B.
- K., I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96(4), 793–804.
- K., I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. *Electronic Journal of Statistics* 4, 1097–1112.
- K., I. and D. Firth (2011). Multinomial logit bias reduction via the poisson log-linear model. Biometrika 98(3), 755–759.