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S1 Description of the supporting computer code

The computer code used to reproduce the empirical analyses in the main text is in the direc-
tory RBM supporting computer code, which can be downloaded from http://www.ikosmidis.

com/files/RBM_supporting_computer_code.zip. That directory has six sub-directories. All
references in the descriptions below are to figures, tables, and sections in main text.

• The ratio directory contains two R scripts for reproducing the results in Example 3.1 and
Example 4.1 about the ratio of two means. The file ratio.R provides functions to com-
pute the ratio estimator and conduct the simulation study, whereas ratio summaries.R

provides the code needed to produce Table 2 and Table 3.

• mev contains an R package and an R script to reproduce the simulation study in Exam-
ple 5.2. The R package PwMev contains a C implementation of the pairwise log-likelihood
function (16); the main function of the R package is pwlik mev, for which documentation
is provided. The file mev sim.R contains the code used to run the simulations and produce
Figure 1.

• The glms directory contains five R scripts for the probit regression simulation studies in
Example 5.3 and Example 5.5. The file probit ms functions.R implements the bias-
reducing penalized likelihood and provides other support functions. The code to run
the simulation experiments in Example 5.3 and Example 5.5 is provided in the scripts
probit bias simulation.R and probit ms simulation.R, respectively. Figure 2 and
Figure 3 result from the scripts probit bias summaries.R and probit ms summaries.R,
respectively.

• The autologistic directory provides the Gambia malaria survey data in Gambia.csv,
which are as provided in the geoR R package. The auto symmetric module.jl Julia script
implements M -, RBM -, and RBMp-estimation for general autologistic regression models.
The gambia subsets bootstrap.jl and gambia simulation subset2.jl scripts can be
used to reproduce all numerical results in Example 5.4.
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The script hd simulation.jl conducts the simulations described in Example 6.1. The R
script hd simulation results.R collects the simulation results to produce Table 5.

• The AR(1) directory contains the R script AR simulation and summaries.R and the R
package OLStsBR. The former uses the latter to reproduce the simulation study in Exam-
ple 7.1 and produce Table 6, Table S1, and Table S2.

• The negbin directory contains the R scripts that reproduce the simulation study in Sec-
tion S8. The file negbin-functions.R implements the bias-reducing penalized likelihood
and provides other support functions. The code to run the simulation experiments is in
negbin-simulation.R, and negbin-summaries.R produces Figure S1. The other four R
scripts with filenames starting with arxiv are used to define the simulation settings in
Table S3.

The images/ sub-directories appearing in some of the above directories are for saving interme-
diate results, while the scripts are running. All scripts require their directory to be set as the
working directory in R or Julia, before running them.

S2 Assumptions

The assumptions we employ for the theoretical development in this work are listed below.

A1 Consistency: The M -estimator θ̂ satisfies θ̂
p−→ θ̄, where θ̄ is such that EG(ψ

i) = 0p for
all i ∈ {1, . . . , k}, with ψi = ψi(θ̄) and EG(·) denoting expectation with respect to the
unknown joint distribution function G. In particular, we assume that θ̂ − θ̄ = Op(n

−1/2),
where n is a measure of information about θ.

A2 Local smoothness: The derivatives of ψi
r(θ) (r = 1, . . . , p) exist up to the 4th order in a

neighbourhood N of θ̄. In particular,

lRa(θ) =

k∑
i=1

∂a−1ψi
r1(θ)

∂θr2 · · · ∂θra
,

exist for θ ∈ N and any set Ra = {r1, . . . , ra}, with rj ∈ {1, . . . , p} and a ∈ {1, . . . , 5},
under the convention that lr(θ) =

∑k
i=1 ψ

i
r(θ) and that the components of θ are identified

by superscripts.

A3 Asymptotic orders of centred estimating function derivatives:

HRa = lRa − µRa = Op(n
1/2) ,

where µRa = EG(lRa), and lRa = lRa(θ̄) exist for a ∈ {1, . . . , 5}. Unless otherwise stated,
whenever the argument θ is omitted from quantities that depend on it, as is the case in
the right-hand side of (5), those quantities are understood as being evaluated at θ̄.

A4 Asymptotic orders of joint central moments of estimating functions and their derivatives:

νRa1 ,Sa2 ,...,Tab
=

{
O(n(b−1)/2) , if b is odd

O(nb/2) , if b is even
,

where νRa1 ,Sa2 ,...,Tab
= EG(HRa1

HSa2
· · ·HTab

) are joint central moments of estimating
functions and their derivatives, with Ra1 , Sa2 , . . . , Tab being subsets of a1, a2, . . . , ab > 0
integers.
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A5 The matrix with elements µrs (r, s = 1, . . . , p) is invertible.

Below we provide an analysis of those assumptions.
Assumption A1 is a working assumption that we make about the unbiasedness of the esti-

mating functions and the consistency of theM -estimators. Consistency can sometimes be shown
to hold under weak assumptions about G and the asymptotic unbiasedness of the estimating
functions; see, for example, van der Vaart (1998, Section 5.2) and Huber and Ronchetti (2009,
Section 6.2) for theorems on the consistency of M -estimators. We assume that there is an index
n, which is typically, but not necessarily, the number of observations, that measures the rate the
information about the parameter θ accumulates, and that the difference θ̂ − θ̄ is Op(n

−1/2).
Assumption A2 allows taking a sufficient number of derivatives of the estimating functions at

the unknown parameter value θ̄ when constructing the stochastic Taylor expansions required for
the derivation of the empirical bias-reducing adjustments to the estimating functions in Section 3.
Such an assumption covers many well-used estimating functions, like the ones arising in quasi-
likelihood estimation (Wedderburn, 1974), estimation using generalized estimating equations
(Liang and Zeger, 1986), and ML and maximum composite likelihood estimation (Lindsay,
1988; Varin et al., 2011) for a wide range of models. The local smoothness assumption may not
directly cover, though, settings where the estimating function or one of its first few derivatives
are non-differentiable at particular points in the parameter space. Examples of this kind are the
estimating functions for quantile regression and robust regression with Huber loss; see Koenker
(2005) and Huber and Ronchetti (2009) for textbook-length expositions of topics in quantile and
robust regression, respectively. Nevertheless, as shown in Section 3.3, RBM -estimation ends up
requiring only the first two derivatives of the estimating functions, hence its scope of application
may be much wider than what is prescribed by assumptions we used to develop it. This is the
topic of future work.

Assumptions A3 and A4 ensure the existence of the expectations, under the underlying
process G, of products of estimating functions and their derivatives, and that

√
n-asymptotic

arguments are valid. In the special case of ML estimation, when the model is adequate, assump-
tions A3 and A4 can be derived directly from Assumption A1 and A2 using the exlog relations;
see, for example, Pace and Salvan (1997, Section 9.2 and Table 9.1).

Assumption A5 is a technical assumption to ensure that the expectation of the Jacobian of
the estimating function is invertible, when inverting the stochastic Taylor expansion of 0p =∑k

i=1ψ
i(θ̃) +A(θ̃) about θ̄, and is typically assumed for estimation using ML and estimating

equations (see, for example, Boos and Stefanski, 2013, Section 7.7).

S3 Stochastic Taylor expansion for θ̃ − θ̄
Using assumptions A1-A3 and index notation, with the indices taking values in the set {1, . . . , p},
a calculation similar to that in McCullagh (2018, Section 7.3) can be used to show that the
expansion of 0p =

∑k
i=1ψ

i(θ̃)+A(θ̃) about θ̄ results in a stochastic Taylor expansion for θ̃− θ̄
of the form

θ̃r − θ̄r = Hr +HaHr
a +

1

2
HaHbµrab +Ar+ (S1)

+HaHb
aH

r
b +

1

2
HaHbHr

cµ
c
ab +

1

2
HaHbHc

bµ
r
ac+

+
1

2
HaHbHc

aµ
r
cb +

1

4
HaHbHcµdbcµ

r
ad +

1

4
HaHbHcµdabµ

r
dc+

+
1

2
HaHbHr

ab +
1

6
HaHbHcµrabc+

+AaHr
a +

1

2
AaHbµrba +

1

2
AaHbµrab +Ar

aH
a +Op(n

−2) ,
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where Hr
r1...ra = −µrsHsr1···ra , µ

r
r1···ra = −µrsµsr1···ra , and Ar

r1···ra = −µrsAsr1···ra , with µrs

denoting the matrix inverse of µrs (assumption A5) and Ar1···ra = ∂a−1Ar1(θ)/∂θ
r2 · · · ∂θra .

S4 Quasi Newton-Raphson for RBM estimation

Apart from special cases, like the estimation of the ratio of two means in Example 3.1 and of
the parameter of an AR(1) process in Example 7.1, and as is the case for general M -estimation,
the solution of the adjusted estimating equations (4) is, typically, not available in closed form.
General procedures for systems of nonlinear equations can be used to solve them.

A general iterative procedure of this kind results from a modification of the Newton-Raphson
iteration that in the uth iteration updates the current estimate θ(u) to a new value θ(u+1) as

θ(u+1) := θ(u) + au

{
j
(
θ(u)

)}−1
{

k∑
i=1

ψi
(
θ(u)

)
+A

(
θ(u)

)}
, (S2)

where au is a deterministic sequence of positive constants that can be used to implement various
schemes to further control the step size, like step-halving. Iteration (S2) defines a quasi Newton-
Raphson procedure with the correct fixed point. The iteration is a relaxation of full Newton-
Raphson iteration, which would have au = 1 and the matrix of derivatives of

∑k
i=1ψ

i(θ)+A(θ)

in the place of j(θ). The M -estimates from the solution of
∑k

i=1ψ
i(θ) = 0p are obvious

starting values for the quasi Newton-Raphson procedure, and candidate stopping criteria include
|θ(u+1) − θ(u)|/au < ϵ and ||

∑k
i=1ψ

i
(
θ(u)

)
+A

(
θ(u)

)
||1 < ϵ, for some ϵ > 0, where || · ||1 is the

L1 norm.
Typically, quasi Newton-Raphson will have first-order convergence to the solution of the

adjusted estimating equations, compared to the second-order convergence that full Newton-
Raphson has. The advantage of using quasi Newton-Raphson instead of full Newton-Raphson
is that all quantities required to implement (S2) are readily available once an implementation
of the empirical bias-reducing adjustments is done.

The explicit RBM -estimator θ† in (9) results as a by-product of the quasi Newton-Raphson
procedure (S2). A single step of (S2) with a1 = 1, starting at the M -estimator θ̂ results in
θ†. In fact, the quasi Newton-Raphson iteration (S2) reveals that implicit RBM -estimation can
be understood as iterative bias correction, exactly as is the case for reduced-bias estimation in
fully-specified models (see, for example, Kosmidis and Firth, 2010).

The fact that the empirical bias-reducing adjustment in (7) depends only on derivatives of
estimating functions, enables general implementations by deriving the derivatives ∂ψi

r(θ)/∂θ
s

and ∂2ψi
r(θ)/∂θ

s∂θt (r, s, t = 1, . . . , p) either analytically or by using automatic differentiation
techniques (Griewank and Walther, 2008). Those derivatives can be combined together to pro-
duce ur(θ), j(θ), e(θ) and dr(θ), and, then, matrix multiplication and a numerical routine for
matrix inversion can be used for an easy, general implementation of (8).

For implementations using automatic differentiation, in particular, the only required input
from the user is an appropriate implementation of the contributions ψi(θ) to the estimating
functions. The automatic differentiation routines will, then, produce implementations of the
required first and second derivatives of the contributions. The MEstimation Julia package
(https://github.com/ikosmidis/MEstimation.jl) provides a proof-of-concept of such an im-
plementation.

S5 Bias-reducing penalized log-likelihoods for generalized linear
models

For notational simplicity, the dependence of the various quantities on β and/or ϕ is suppressed.
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In contrast to the bias-reduction methods proposed for generalized linear models in Kos-
midis and Firth (2009), the empirical bias-reducing adjustment to the score function always
corresponds to a penalty to the sum of the log-likelihood contributions (14) about β and ϕ.
According to Section 5.1, if ϕ is unknown, the only ingredients required in the penalty are the
observed information matrix about β and ϕ, j(β, ϕ), and the sum of the outer products of the
gradient of (14) across observations, e(β, ϕ). The bias-reducing penalized log-likelihood is, then

n∑
i=1

log fi(yi | xi,β, ϕ)−
1

2
trace

[
{j(β, ϕ)}−1 e(β, ϕ)

]
.

The closed-form expressions for j(β, ϕ) and e(β, ϕ) are

j =

[
jββ jβϕ
j⊤βϕ jϕϕ

]
and e =

[
eββ eβϕ
e⊤βϕ eϕϕ

]
,

where

jββ =
1

ϕ
X⊤QX , jϕϕ =

1

ϕ3
1⊤n (R−A′)1n +

1

2ϕ4
1⊤nA

′′1n , jβϕ =
1

ϕ2
X⊤W̃1n ,

eββ =
1

ϕ2
X⊤W̃ 2X , eϕϕ =

1

4ϕ4
1⊤n (R−A′)21n , eβϕ =

1

2ϕ3
X⊤W̃ (R−A′)1n ,

where 1n is a vector of n ones. The n×n diagonal matrices R, A′, A′′ have ith diagonal element
ri = −2mi(yiθi − κ(θi) − c1(yi)) (deviance residual), a′i = mia

′(−m1/ϕ), a
′′
i = m2

i a
′′(−m1/ϕ),

respectively, where a′(u) = da(u)/du, a′′(u) = d2a(u)/du2. The n × n diagonal matrix Q and
W̃ have ith diagonal element qi = bidi − b′i(yi − µi) and w̃i = bi(yi − µi), respectively, where
bi = midi/vi, and b

′
i = mi(d

′
i/vi−d2i v′i/v2i ). In the latter expression, d′i = d2µi/dη

2
i , v

′
i = dvi/dµi,

S6 Expressions for the bias-reducing penalty for the pairwise
likelihood of Padoan et al. (2010)

The joint density of the Yi(sl) and Yi(sm) (l,m = 1, . . . , L; l ̸= m) is

f(yi(sl), yi(sm) | θ) = exp

{
−Φ(wlm)

yi(sl)
− Φ(vlm)

yi(sm)

}[
vlmϕ(wlm)

a2lmy
2
i (sl)yi(sm)

+
wlmϕ(vlm)

a2lmy
2
i (sm)yi(sl)

(S3)

+

{
Φ(wlm)

y2i (sl)
+

ϕ(wlm)

almy
2
i (sl)

− ϕ(vlm)

almyi(sl)yi(sm)

}{
Φ(vlm)

y2i (sm)
+

ϕ(vlm)

almy
2
i (sm)

− ϕ(wlm)

almyi(sl)yi(sm)

}]
,

with Φ(·) and ϕ(·) the distribution and density function of the standard normal distribution,
respectively. In the above expression, alm = alm(θ) = {(sl − sm)⊤Σ−1(θ)(sl − sm)}1/2, wlm =
wlm(θ) = alm(θ)/2 + log{yi(sl)/yi(sm)}/alm(θ), and vlm = vlm(θ) = alm(θ)− wlm(θ).

We provide expressions for

lt(θ; yi(sl), yi(sm)) =
∂ log f(yi(sl), yi(sm)|θ)

∂θt
,

and

ltu(θ; yi(sl), yi(sm)) =
∂2 log f(yi(sl), yi(sm)|θ)

∂θt∂θu
,

for t, u ∈ {1, 2, 3}. These quantities are needed to form the entries of the matrices e(θ) and j(θ)
that are required when constructing the bias-reducing penalty to the pairwise log-likelihood.
Specifically, the (t, u)th elements of j(θ) and e(θ) are, respectively,

jtu(θ) = −
k∑

i=1

∑
l>m

ltu(θ; yi(sl), yi(sm)),
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etu(θ) = −
k∑

i=1

[∑
l>m

lt(θ; yi(sl), yi(sm))

][ ∑
l′>m′

lu(θ; yi(sl′), yi(sm′))

]⊤

.

The logarithm of expression (S3) can be expressed as

log f(yi(sl), yi(sm)|θ) = Alm(θ) +Blm(θ) + log{Clm(θ)Dlm(θ) + Elm(θ)}, (S4)

where

Alm(θ) = −Φ(wlm(θ))

yi(sl)
,

Blm(θ) = −Φ(vlm(θ))

yi(sm)
,

Clm(θ) =
Φ{wlm(θ)}
y2i (sl)

+
ϕ{wlm(θ)}
alm(θ)y2i (sl)

− ϕ{vlm(θ)}
alm(θ)yi(sl)yi(sm)

,

Dlm(θ) =
Φ{vlm(θ)}
y2i (sm)

+
ϕ{vlm(θ)}

alm(θ)y2i (sm)
− ϕ{wlm(θ)}
alm(θ)yi(sm)yi(sl)

,

Elm(θ) =
vlm(θ)ϕ{wlm(θ)}
a2lm(θ)y2i (sl)yi(sm)

+
wlm(θ)ϕ{vlm(θ)}
a2lm(θ)yi(sl)y

2
i (sm)

.

In what follows, the dependence of the above quantities on θ, l, and m is omitted.
The first-order partial derivative of (S4) with respect to the component t of θ is

lt(θ; yi(sl), yi(sm)) = At +Bt + (CD + E)−1(CtD + CDt + Et) ,

where

At =
∂

∂θt
A = −ϕ(w)wt

yi(sl)
,

Bt =
∂

∂θt
B = −ϕ(v)vt

yi(sm)
,

Ct =
∂

∂θt
C =

ϕ(w)wt

y2i (sl)
− wϕ(w)(wta− wat)

a2y2i (sl)
− vϕ(v)(vta− vat)

a2yi(sl)yi(sm)
,

Dt =
∂

∂θt
D =

ϕ(v)vt
y2i (sm)

− vϕ(v)(vta− vat)

a2y2i (sm)
− wϕ(w)(wta− wat)

a2yi(sl)yi(sm)
,

Et =
∂

∂θt
E =

ϕ(w){(vt − vwwt)a− 2vat}
a3y2i (sl)yi(sm)

+
ϕ(v){(wt − wvvt)a− 2wat}

a3yi(sl)y
2
i (sm)

,

and

at =
∂

∂θt
a = − 1

2a

{
(sl − sm)⊤Σ̄t(sl − sm)

}
,

Σ̄t =
∂

∂θt
Σ−1 = −Σ−1

(
∂

∂θt
Σ

)
Σ−1 ,

wt =
∂

∂θt
w =

at
2

− at
a2

log{yi(sl)/yi(sm)} ,

vt =
∂

∂θt
v = at − wt .

The second-order partial derivative of (S4) with respect to the tth and uth component of θ is

ltu(θ; yi(sl), yi(sm)) = Atu +Btu − (CD + E)−2(CuD + CDu + Eu)(CtD + CDt + Et) +

+(CD + E)−1(CtuD + CtDu + CuDt + CDtu + Etu) ,
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where

Atu =
∂2

∂θt∂θu
A = −−wϕ(w)wtwu + ϕ(w)wtu

yi(sl)
,

Btu =
∂2

∂θt∂θu
B = −−vϕ(v)vtvu + ϕ(v)vtu

a2yi(sm)
,

Ctu =
∂2

∂θt∂θu
C =

−wϕ(w)wuwt + ϕ(w)wtu

y2i (sl)
− wuϕ(w)(wta− wat)− w2ϕ(w)wu(wta− wat)

a2y2i (sl)
+

−wϕ(w)(wtua+ wtau − wuatu − watu)

a2y2i (sl)
+

2auwϕ(w)(wta− wat)

a3y2i (sl)
+

−vuϕ(v)(vta− vat)− v2ϕ(v)vu(vta− vat)

a2yi(sl)yi(sm)
+

−vϕ(v)(vtua+ vtau − vuatu − vatu)

a2yi(sl)yi(sm)
+

2auvϕ(v)(vta− vat)

a3yi(sl)yi(sm)
,

Dtu =
∂2

∂θt∂θu
D =

−vϕ(v)vuvt + ϕ(v)vtu
y2i (sm)

− vuϕ(v)(vta− vat)− v2ϕ(v)vu(vta− vat)

a2y2i (sm)
+

−vϕ(v)(vtua+ vtau − vuatu − vatu)

a2y2i (sm)
+

2auvϕ(v)(vta− vat)

a3y2i (sm)
+

−wuϕ(w)(wta− wat)− w2ϕ(w)wu(wta− wat)

a2yi(sl)yi(sm)
+

−wϕ(w)(wtua+ wtau − wuatu − watu)

a2yi(sl)yi(sm)
+

2auwϕ(w)(wta− wat)

a3yi(sl)yi(sm)
,

Etu =
∂2

∂θt∂θu
E =

vtuϕ(w)− vtwϕ(w)wu − vuwϕ(w)wt − vwϕ(w)wtwu − vwϕ(w)wtu

a4y2i (sl)yi(sm)
+

−2au
vtϕ(w)− vwϕ(w)wt

a3y2i (sl)yi(sm)
− 2

vuϕ(w)at − vwϕ(w)wuat + vϕ(w)atu
a6y2i (sl)yi(sm)

+

wtuϕ(v)− wtvϕ(v)vu − wuvϕ(v)vt − wvϕ(v)vtvu − wvϕ(v)vtu
a4yi(sl)y

2
i (sm)

+

−2au
wtϕ(v)− wvϕ(v)vt
a3yi(sl)y

2
i (sm)

− 2
wuϕ(v)at − wvϕ(v)vuat + wϕ(v)atu

a6yi(sl)y
2
i (sm)

,

and

atu =
∂2

∂θt∂θu
a = − au

2a2

{
(sl − sm)⊤Σ̄t(sl − sm)

}
+

1

2a

{
(sl − sm)⊤Σ̄tu(sl − sm)

}
,

Σ̄tu =
∂2

∂θt∂θu
Σ−1 = −

(
∂

∂θt
Σ−1

)(
∂

∂θu
Σ

)
Σ−1 −Σ−1

(
∂

∂θt
Σ

)(
∂

∂θu
Σ−1

)
,

wtu =
∂2

∂θt∂θu
w =

atu
2

− atua− 2atau
a4

log{yi(sl)/yi(sm)} ,

vtu =
∂2

∂θt∂θu
v = atu − wtu .

S7 Additional simulation results for Example 7.1

Tables S1 and S2 provide simulation results like those in Table 6 of the main text, for θ ∈
{0.2, 0.9}. Note that in Table S2 the figures are conditional on the ordinary least square estimate,
θ̂, begin less than 1 in absolute value, i.e., the estimated autoregressive process is stationary.
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Table S1: θ = 0.2. Figures are reported in 2 decimal places, and the figures 0.00 and −0.00 are
for estimated biases less than 0.0024 and −0.0024, respectively. The simulation error for the
estimates of the bias is between 2.40× 10−4 and 7.11× 10−4.

α Errors
T Slope

50 100 200 400 800 Est Exp

θ̂ −0.81 −0.39 −0.20 −0.08 −0.06 0.98 −1

θ̃
1/3 −0.55 −0.20 −0.09 −0.01 −0.03 −1.27 −3/2
1/2 −0.47 −0.16 −0.07 0.00 −0.02 −1.64 −3/2

θ†
1/3 −0.53 −0.19 −0.08 −0.01 −0.03 −1.25 −3/2
1/2 −0.42 −0.13 −0.05 0.01 −0.02 −1.25 −3/2

θ(J) −0.11 −0.07 −0.04 0.01 −0.00 −1.64 < −1

θ(M) −2.18 −1.12 −0.59 −0.27 −0.16 −0.96 < −1

θ(S)
1/3 3.97 3.65 3.20 2.84 2.20 −0.21 < −1

log(T/2)/ log(T ) 0.48 0.31 0.17 0.11 0.03 −0.95 < −1

Normal 0.05 0.03 −0.04 0.01 −0.00 −1.64 −2
θ∗ Student-t 0.78 0.32 0.14 0.09 0.02 −1.24

Laplace −4.56 −2.81 −1.79 −1.19 −0.80 −0.63

Table S2: θ = 0.9. Figures are reported in 2 decimal places, and the figure 0.00 is for estimated
bias of −0.0024. The simulation error for the estimates of the bias is between 1.0 × 10−4 and
7.41× 10−3.

α Errors
T Slope

50 100 200 400 800 Est Exp

θ̂ −3.22 −1.70 −0.87 −0.44 −0.22 −0.97 −1

θ̃
1/3 −2.94 −1.44 −0.68 −0.31 −0.13 −1.21 −3/2
1/2 −2.66 −1.21 −0.52 −0.19 −0.07 −1.32 −3/2

θ†
1/3 −2.91 −1.42 −0.67 −0.31 −0.13 −1.12 −3/2
1/2 −2.54 −1.13 −0.47 −0.17 −0.06 −1.35 −3/2

θ(J) −0.68 −0.19 −0.06 −0.01 0.00 −2.11 < −1

θ(M) −2.14 −1.22 −0.70 −0.39 −0.21 −0.83 < −1

θ(S)
1/3 15.14 14.71 13.56 12.26 9.79 −0.15 < −1

log(T/2)/ log(T ) 1.93 1.24 0.70 0.39 0.20 −0.82 < −1

Normal 0.60 0.56 0.12 0.03 0.01 −1.60 −2
θ∗ Student-t −0.18 1.07 0.95 0.43 0.18 −0.13

Laplace −18.34 −12.59 −8.49 −5.83 −3.82 −0.56

Whenever the estimated process is non stationary with θ̂ > 1, it is not possible to generate
stationary bootstrap series for the computation of the estimator θ(M). The estimated non-
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Table S3: Simulation settings for the negative binomial model in Section S8. The settings are
as in Guerrier et al. (2020, Section 6) (2010.13867v2, §6) and Zhang et al. (2022, Section J.4 in
Supplementary Materials) (2204.07907v1, §J.4).

2010.13867v2, §6 2204.07907v1, §J.4 2204.07907v1, §J.4 2204.07907v1, §J.4

n 100 200 400 800
p 20 41 51 61

xi

xi1 = 1 xi1 = 1 xi1 = 1 xi1 = 1
xi2 ∼ N(0, 1) xij ∼ N(0, 1/5) xij ∼ N(0, 4/25) xij ∼ N(0, 2/15)

xi3 = I(i > 50) (j = 2, . . . , 41) (j = 2, . . . , 51) (j = 2, . . . , 61)
xij ∼ N(0, 4/25)
(j = 4, . . . , 20)

β1 1.5 2 2 2
β2 2.5 1 1 1
β3 −2.5 −1 −1 −1
β4 0 0 0 0
...

...
...

...
...

βp 0 0 0 0
κ 0.6 0.7 0.7 0.7

stationary processes are 497 (out of 250 × 216/50) for T = 50, 1 (out of 250 × 216/100) for
T = 100, and 0 for other sample sizes.

S8 Negative binomial regression

The performance of the explicit and implicit RBM estimators is assessed here in the context of
negative binomial regression with many covariates using the experiments in Guerrier et al. (2020,
Section 6) and Zhang et al. (2022, Section J.4 in Supplementary Materials). Both Guerrier
et al. (2020) and Zhang et al. (2022) are unpublished preprints at the time of writing the
current Supplementary Material document, and, hence, they are subject to change or become
unavailable. For this reason, in what follows, we fully describe the simulation settings we consider
from those preprints.

Suppose that y1, . . . , yn are realizations of Y1, . . . , Yn, which are assumed to be conditionally
independent given covariates x1, . . .xn. Assume that Yi | xi is distributed according to a
negative binomial distribution with probability mass function

f(yi | xi;β, κ) =
Γ(yi + κ−1)

Γ(yi + 1)Γ(κ−1)

(
κ−1

κ−1 + µi

)κ−1 (
µi

κ−1 + µi

)yi

,

where µi = E(Yi|xi;β) = exp(x⊤
i β). The variance of Yi | xi is var(Yi | xi) = µi + κµ2i , and κ is

an overdispersion parameter. When κ → 0, the distribution of Yi | xi converges to the Poisson
distribution. So, negative binomial regression can be viewed as a fully-parametric extension to
Poisson regression with log link that accounts for over-dispersion.

The simulation settings we consider are as shown in Table S3, and are exactly as in Guer-
rier et al. (2020, Section 6) and Zhang et al. (2022, Section J.4 in Supplementary Materials).
All covariate vectors x1, . . . ,xn have entries that are generated independently from each other
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arxiv:2010.13687v2, §6
n = 100, p = 20

arxiv:2204.07907v1, §J.4
n = 200, p = 41

arxiv:2204.07907v1, §J.4
n = 400, p = 51

arxiv:2204.07907v1, §J.4
n = 800, p = 61
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Figure S1: Absolute bias (|Bias|) and empirical root mean squared error (RMSE) of various
estimators of β and κ for the simulation settings in Table S3 of Section S8. Results are shown,
from darker to lighter grey, for the ML estimator, the implicit RBM -estimator, the explicit
RBM -estimator, and the adjusted score functions estimator of Firth (1993).

according to Table S3. The covariate vectors are generated once and held fixed across the 1 000
simulations of the response vector (y1, . . . , yn)

⊤ at each of the four sets of values for β and κ.
For each sample, we estimate β and κ using ML, as implemented in the glm.nb function

from the MASS R package (Venables and Ripley, 2002), the adjusted score functions approach
in Firth (1993), as implemented in the brnb function from the brglm2 R package (Kosmidis,
2023), and explicit and implicit RBM -estimation.

To our knowledge there is no formal way to date that can detect whether the ML estimate
of the negative binomial regression has elements on the boundary of the parameter space, which
includes κ = 0 and/or |βj | = ∞ for at least one j ∈ {1, . . . , p}. For this reason, boundary
estimates where declared in an ad-hoc way, by checking if either the estimate of κ is smaller
than 10−3 or the estimated standard error for βj was larger than 100 (j = 1, . . . , p). In our
simulation studies, this only happened for the setting 2010.13867v2, §6 in Table S3. There were
3, 7, 5, 4 samples out of a 1000, where at least one of the components of ML, the adjusted score
functions approach in Firth (1993), and the explicit and implicit RBM -estimation, respectively,
were declared as being on the boundary.

Figure S1 shows estimates of the absolute bias and root mean squared error of the four esti-
mators. Similarly to Example 5.3 of the main text, the summaries are computed after removing
the samples where estimates have been declared as being on the boundary. As is apparent, the
adjusted scores approach of Firth (1993), and explicit and implicit RBM -estimation result in
estimators with substantially smaller bias and mean squared error than the ML estimator. In
all cases, the reduction in bias is substantial in the estimation of β1 and κ. The adjusted scores
approach of Firth (1993), which relies on expectations of products of log-likelihood derivatives
with respect to the correct model, is able to almost completely remove finite sample bias in all
four simulation settings of Table S3. As in Example 5.3 of the main text, the differences between
the various reduced-bias estimators in terms of bias and root mean squared error diminish fast
as the sample size increases.

The arguments in Section 5.3 can be extended to develop a composite plug-in penalty that
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returns implicit RBM -estimators, which apart from components away from the boundary, also
have bias that is free from the first-order term. The penalty can consist of a term that diverges
to −∞ as κ → 0, and, as the results in Joshi et al. (2022) on Poisson regression suggest, a
scaled-version of Jeffreys’ invariant prior.
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